

Adapting to Climate Change with Low Impact Development/Green Infrastructure

October 5th, 2017

Christine Zimmer, P.Eng. MSc (Eng) Senior Manager, Water and Climate Change Sciences

Amna Tariq, P.Eng. B. Eng Senior Specialist, Water and Climate Change Sciences

1

Presentation Outline

- Monitoring Findings
- Need for Change
- Common Perceptions of LID
- LID Design and Performance
- Draft MOECC LID Requirements
- More Lessons Learned

Minister's Award for Environmental Excellence 2013 Award Winner

Minister's Award for Environmental Excellence

What our Stream Monitoring Shows Us

Rural Hydrology

For Rural Watersheds like the Moira River at Foxboro: winter flows have increased, spring flows have decreased, & summer flows have remained unchanged.

Source: Trevor Dickinson, University of Guelph

Minister's Award for
Environmental Excellence

Urban Hydrology

For a highly Urbanized Watershed like the Don River at Todmorden: winter flows have increased, spring flows have decreased, & summer flows have greatly increased.

Source: Trevor Dickinson, University of Guelph

2013 Award Winner

Minister's Award for

Minister's Award for Environmental Excellence

2013 Award Winner

Flow and Turbidity: Sept 23rd Storm (~30mm)

TSS contribution from Urban Vs Rural Subwatersheds

Monthly 75th Percentile (1975-2013)

2013 Award Winner

Minister's Award for

Impact of Warm Winter

Fisheries and recreational impacts costing ~\$750M - \$1.5B annually in lost tourism along GTA shoreline

Water Plant shut down over \$400,000 in repair costs

2013 Award Winner

Minister's Award for

Annual chloride concentration: 1976 to 2012

2013 Award Winner

Minister's Award for

How our Communities have been impacted by Urbanization and Climate Change

The Big Seven (11 years)

Minister's Award for Environmental Excellence

Impact of Extreme Rainfall on Riverine Flooding

LEGEND

Cooksville_Roads

Flood inundation - Peterborough Trent U July 14-15, 2004

Flood inundation - Toronto Nashdene Yard, August 19, 2005

Flood inundation - Hamilton, Stoney Creek, July 25-26, 2009

Flood inundation - Mississauga, Valley Blvd August 4, 2009

Cooksville_Floodlines

Conduits

Outfalls

Minister's Award for Environmental Excellence

News / GTA

Mississauga resident living in tent since flood

Ken Hills, 60, is one of hundreds living near Cooksville Creek displaced since last week's storm.

Minister's Award for Environmental Excellence

ALEX NINO GHECIU / TORONTO STAR Order this photo

We're experiencing more extreme weather

https://www.youtube.com/watch?v=NwwnZG0JJ50

Why is this happening?

Typical Annual Rainfall Frequency Distribution For Toronto, Ontario

50% Deep & Shallow Infiltration

Natural Ground Cover

Urban Hydrology

Typical development: Stormwater management using End of Pipe SWM Pond

Urban Hydrology

Development with Low Impact Development

Holistic Approach & Criteria

• When used together

Holistic SWM Approach vs. Criteria

Urban Watershed Study Lessons

Watershed Studies in Urban Areas

 Existing urban areas – not all urban watersheds are alike in terms of level of service for stormwater

City of Mississauga 25% receives quantity control 17% receives quality and quantity Minister's Award for Environmental Excellence

2013 Award Winner

Town of Caledon 54% of Bolton settlement area receives quantity control 64% of ponds provide water quality and quantity control

Watershed Studies in Urban Areas

- Opportunities within urban areas vary in terms of technical feasibility
 - Time to retrofit (E.g., road retrofits with Low Impact Development)
- How to set an appropriate level of service for stormwater? What is feasible, reasonable, and needed? How to integrate Urban targets with Watershed Targets

Minister's Award for Environmental Excellence

Interconnected Systems

Natural Disasters are a threat to the public, we need to re-evaluate evacuation plans

Striking the Right Balance

2013 Award Winner

Minister's Award for

Need to Go from Grey to Green

Industrial & Commercial Lands

Residential Lands Road Right of Ways

Public Lands

Minister's Award for Environmental Excellence

PERCEPTION: Storm water infrastructure will take away park lands and recreation

LID features can be implemented playgrounds with no impact to use

LID Options for Parks

Landscape Alternative

Permeable Pavement

Rain Garden

Bioswales

Rainwater Harvesting

Minister's Award for Environmental Excellence

PERCEPTION: LID costs more to maintain than ponds

Design Matters

Minister's Award for Environmental Excellence

"No additional maintenance is required at parks with LID." Tad Makula and Rich Hurren, City of Mississauga

"This project will remedy a number of challenging maintenance issues and reduce our operating costs"

Nancy Cole, IMAX

PERCEPTION: LID does not perform in clay soils

Road Right of Way – Performance Monitoring

- 90% of all rainfall events are absorbed by LID
- Only 3-8 rainfall events
 produce runoff
- For those 3-8 events, LID removed up to 99% of Total Suspended Solids and 84% Total Phosphorus
- Works during winter thaws

PERCEPTION: LID does not provide flood control

LID Performance

- LID reduced up to 60% of the peak runoff;
- LID reduced volume by 30% (30 mm)
- Delayed the timing of the peak by 20 minutes

PERCEPTION: Residents won't maintain the LID

LID Options - Right Design Right Location

City Centre Showcase Area

Well maintained by city as with other landscaping beds in showcase areas

Neighbourhood with high ownership rate

 will be adopted by owners and maintained

High rental rate / ongoing maintenance concerns

 low maintenance grass option preferred

Minister's Award for Environmental Excellence

PERCEPTION: LID does not perform in winter

Do LID Features Work in Winter?

Monitoring Suggests

- LID offers "quick-win" opportunities in flood prone areas while larger scale SWM measures are being designed, constructed
- Data supports International BMP database (BMPDB) and National Stormwater Quality Database (NSQD), and STEP;
- City of Mississauga passes Resolution to look at all capital roads projects for LID feasibility

LID Design and Performance

With our Municipal Partners:

- 61 LID Sites
- 12 Demonstration
 Sites
- 19 key
 performance and
 maintenance
 objectives

Alton Village Town of Caledon CVC Head Office Terra Cotta City of Brampton **CVC** Head Office Town of Halton Hills City of Elm Drive Mississauga Portico Church Unitarian O'Connor Park Town of Milton Church Lakeview MAX Green Glade Town of Oakville **Public School** Lakeside Park Lake Ontario blic Schoo Lakeside Park

- 2013 Award Winner

Minister's Award for

Environmental Excellence

Top Five Stakeholder Objectives

- 1. Long term maintenance needs and impact on performance;
- 2. Lifecycle costs (asset management);
- 3. Water quality and quantity performance of LID design in low infiltration soils;
- 4. How multiple LIDs treat and manage stormwater;
- 5. Performance of flood control, erosion control, water quality and natural heritage protection.

IMAX – Industrial Commercial

2013 Award Winner

Minister's Award for

Environmental Excellence

Bioswale Treatments

Bioswale to Sorbtive

Jellyfish to Bioswale

Stand alone Bioswale

Minister's Award for Environmental Excellence

Sorbtive® Vault

 Adsorbs and retains dissolved phosphorus

Jellyfish® Filter

Removes total suspended solids and particulate-bound pollutants

Minister's Award for Environmental Excellence

Bioswale in action!

= 2013 Award Winner

Minister's Award for Environmental Excellence

Bioswale Water Quantity

Minister's Award for Environmental Excellence 2013 Award Winner

Bioswale Water Quality

Metric	Criteria	Bioswale + Sorbtive	Jellyfish + Bioswale	Stand Alone Bioswale	SWMP
Runoff Volume Reduction	15 mm	22.4	19.5	16.1	0
TSS Removal	80%	98	99	97	61***
Phosphorous Removal	80% (40%)	90	65*	57*	1.5**

*As-built drainage area constructed almost twice as large as the as-designed **2010 Stormwater Pond Maintenance and Anoxic Conditions Investigations – Final Report, 2011

*** International Stormwater BMP Database

Minister's Award for Environmental Excellence

Permeable Pavement Treatments

Granular "O" aggregate ³⁄₄" Clearstone aggregate

³/₄" Clearstone aggregate with geosynthetic clay liner

Environmental Excellence 2013 Award Winner

Minister's Award for

Permeable Pavement Water Quantity

2013 Award Winner

Environmental Excellence

Permeable Pavement Water Quality

Metric	Criteria	Granular "O"	³₄" Clear stone	¾" Clear stone with liner	SWMP
Runoff Volume Reduction	15 mm	15.5	24.8	24.2	0
TSS Removal	80%	93	100	97	61***
Phosphoro us Removal	80% (40%)	92	100	99	1.5**

*As-built drainage area constructed almost twice as large as the as-designed **2010 Stormwater Pond Maintenance and Anoxic Conditions Investigations – Final Report, 2011 *** International Stormwater BMP Database

Permeable Pavement with Liner Chloride Monitoring

- 2013 Award Winner

Minister's Award for

Environmental Excellence

Elm Drive – Road Right of Way

Minister's Award for Environmental Excellence

After:

Road re-graded so all runoff goes to the LID facility

Tight native soils: infiltration rate of **7.5 mm/h**

Before:

Split road drainage

No sidewalks

Aesthetically unappealing

Minister's Award for Environmental Excellence

Quantity Performance: Volume

Note: Data is an aggregation of monitoring results from 2011 to 2015 (inclusive)

Bioretention Water Quality

Metric	Criteria	Performance at Elm*	SWMP
Runoff Volume Reduction	15 mm	24 mm	0
TSS Removal	80%	88%	61***
Phosphorous Removal	80%	91%	1.5**

*As-built drainage area constructed almost twice as large as the as-designed **2010 Stormwater Pond Maintenance and Anoxic Conditions Investigations – Final Report, 2011 *** International Stormwater BMP Database

Performance Evaluation: Precipitation Video

Environmental Excellence 2013 Award Winner

Minister's Award for

July 8th 2013 – Elm Drive Performance

Event greater than 100 year design storm 105 mm in 5 hours, 242 mm/hr intensity

- ~20 minute lag time
- ~30% volume reduction
- ~60% peak flow reduction

[·] Elm Drive LID Site

Meadows in the Glenn – Residential

Minister's Award for Environmental Excellence

LID features at Meadows in the Glen

- 1. Swale drainage
- 2. Biofilters or bioretention cells
- 3. Soakaway pits
- 4. Rain gardens
- 5. Permeable Pavement Driveways

LIDs to Pond A Inlet

MITG: Low Pond Levels in Summer Months

Wychwood Residential Subdivision

Environmental Excellence 2013 Award Winner

Minister's Award for

- 2013 Award Winner

Minister's Award for

DRAFT MOECC LID Manual Requirements, 2017

Hierarchy (MOECC, 2017)

- Begin with better site design
- Utilize natural systems and preserve existing natural systems;
- Create multifunctional landscapes that achieve goals and objectives beyond stormwater management to include broader community goals of livability and sustainably well environmental as as protection objectives;
- Contribute to water sustainability across the watershed to reduce the use of resources including potable water; and
- Provides climate change co-benefits (contributes to both climate change mitigation and adaptation, it is a climate co-benefit)

Minister's Award for Environmental Excellence

Draft MOECC LID Requirements (MOECC, 2017)

Minister's Award for Environmental Excellence

Regionally Specific 90th Percentile RVC_T Requirements for Ontario

Source: MOECC, 2017

Draft Alternative Requirements (MOECC, 2017)

- Two (2) alternatives are identified for sites with restrictions (i.e. constraints). These constraints may include:
 - shallow bedrock
 - high groundwater table
 - contaminated soils
 - swelling clays or unstable sub-soils
 - high risk site activities including spill prone areas.

Sites with Restrictions/Constraints

> Alternative 1: Reduced Runoff Volume Control Target (RVC_T)

75% reduction of the
90th percentile rainfall
event for the area
Relocation of
features as needed to
meet the target

Alternative 2: -Maximum Extent Possible - XX% (site specific)
of volume reduction
- Relocation of
features as needed
to meet target

Minister's Award for Environmental Excellence

Direct Discharge of Stormwater to Watercourses or Wetlands (MOECC, 2017)

- Reduced pollutant loads
- 100% retention of the 90th percentile event for storm sewers discharging directly to a water course or wetland,
- Alternatives #1 and #2, will not be considered.

Location: Cooksville Creek, Mississauga ON

Source: AOTU, 2018. <u>http://angelsoftheunderground.ca/drains/cooksville-</u> <u>creek/rusty-bucket/index.html</u>

Does Elm Drive meet the Draft RVC_T Hierarchy? ...the answer is yes...

CVC TRCA LSRCA Treatment Train Tool

- Designed to help you meet MOECC requirements with respect to Low Impact Development
- Assist Conservation Authorities and Municipalities provide approvals
- Next Training Session Details: November 17th, 2017 9:30 am to 3:00 pm CVC Board Room; 1255 Old Derry Road, Mississauga, L5N 6R4
- More training sessions to be announced in 2018. For more information, please visit: <u>http://www.sustainabletechnologies.ca/wp/</u> <u>events/lid-treatment-train-tool-mississauga/</u>

Low Impact Development Treatment Train Tool

The Low Impact Development Treatment Train Tool (LID TTT) has been developed by Lake Simcoe Region Conservation Authority (LSRCA), Credit Valley Conservation (CVC) and Toronto and Region Conservation Authority (TRCA) as a tool to help developers, consultants, municipalities and landowners understand and implement more sustainable stormwater management planning and design practices in their watersheds. The purpose of the tool is to analyze annual and event based runoff volumes and pollutant load removal by the use of Best Management Practices (BMP)'s and Low Impact Development (LID) techniques. The LID TTT provides preliminary water budget analysis (i.e. surface ET, surface runoff, infiltration to soil) and pollutant load removal estimates for pre- and post-development scenarios. The tool is built upon the open source EPA SWMMS model providing a user-friendly interface for novice modelers and cross-compatibility with SWMMS for further model development.

2013 Award Winner

Minister's Award for

More Lessons Learned

Lessons Learned – Drainage Areas/Slopes

- 2% slope vs. 0.50%
- Impervious Drainage Area to Bioretention Surface Area ratio should be between 5:1 and 15:1

Bioretention Area/Detail	Bioswale to Sorbtive	Jellyfish to Bioswale	Bisowale alone
As-designed Treatment Area (m ²)	1125	1350	1566
As-built Treatment Area (m²)	1407	1491	3166
Catchment Area : BMP Area	35:1	24:1	44:1
Event Size Retained/Treated (mm)	22.4	19.5	16.1

Lesson Learned – Groundwater Flow Paths

Minister's Award for Environmental Excellence

Lessons Learned: Snow Storage & Removal

CVC CONSERVATION

2013 Award Winner

Minister's Award for

Lesson Learned: Right Design for Land Use

Lessons Learned: Protecting Infiltration Areas During Construction

2013 Award Winner

Minister's Award for

Lesson Learned – Importance of Grading and Inlet Design

Environmental Excellence

Minister's Award for

Blocked Inlet Video

Environmental Excellence 2013 Award Winner

Minister's Award for

Proper Inlet Design

IMAX Bioswale

Wychwood Bioswale

Minister's Award for Environmental Excellence

Share Lessons Learned: Case Studies

http://www.creditvalleyca.ca/

http://www.sustainabletechnologies.ca/wp/

2013 Award Winner

Minister's Award for

Together, it's our nature to conserve and our future to shape.