LID: The Upper Thames River Conservation Authority Experience Lessons Learned

Design, Maintenance & Monitoring

Dr. Imtiaz Shah, P.Eng.
Environmental Engineer
Upper Thames River Conservation Authority
October 5, 2017

Outline

- Role of SWM LID;
- Barriers to SWM LID;
- LID Design Issues;
- Construction Issues;
- Sediment and Erosion Issues;
- Operation and Maintenance Issue; and
- Monitoring Issues.

Role of SWM LID

- Provincial Policy Statement 2014, Section 1.6.6.7
 Subsection(a-e):
 - Minimize changes in water balance
 - Maximize the extent and function of vegetative and pervious surfaces
 - Shall promote stormwater management best practices, including stormwater attenuation and re-use, and low impact development
- MOECC: New SWM guidelines document (2017 release expected)

UTRCA Survey: Barriers to SWM LIDs

2014 UTRCA survey of municipalities, consultants and developers to assess familiarity with LID identified barriers:

- Technical barriers;
- Institutional barriers; and
- Physical barriers.

Technical Barriers

- Technical experience
 - Conventional approach vs. the new approach
 - LID are not a replacement for conventional approaches
- Technical tools available for LID design
 - Software required for the design
- Design concept of SWM LID based on:
 - Water balance,
 - Post to pre volumes, or
 - 25 mm rainfall
- Training and experience for LID design

Technical Barriers

- Absence of LID guidelines
 - CVC guidelines
 - Understanding/misunderstanding the guidelines
- Lack of data on LID
 - Design examples
 - Pilot projects
- Proper landscape plan and type of plants required
- Understanding site soil properties
- Understanding site topography:
 - Maintain runoff pattern
 - Minimize grading

Institutional Barriers

- No incentives for developers and landowners
 - Why consider LID?
 - Convincing developers that SWM LID is a viable option
 - The developer could see the benefit in:
 - Additional units
 - · Reduced size of the pond
 - · Reduced size of the sewers
 - Minimizing costs
 - Convincing Municipalities that LIDs are acceptable means to address SWM
 - · Fear of unknown
- Absence of supportive policies at municipal level
 - Integration into policy and planning
 - Integration into official plan
 - Consideration into subwatershed studies

Institutional Barriers

- Lack of awareness and knowledge
- Public education
- Staff skepticism (engineers, planners, developers and residents) related to how and if LID techniques will work
 - o Ready to accept the change?
 - o Uncertainty?
 - Design, construction and maintenance of LID?
 - How will LID techniques function within our changing climate?

Physical Barriers

- High groundwater table
- Soil not suitable
- Interference with utilities
- No room for LID in the road ROW
- Steep slope
- Cold climate

LID Design Issues

- Design concepts and experience of SWM LID
 - Infiltration vs. Filtration
 - Design according to the site soil properties
 - Proper grading
 - Inflow and outlet design
 - Overflow system
- Availability of tools for SWM LID design
 - Software
 - Required experience

Construction Issues

- Lack of construction / contractor experience:
 - Contractor education
 - Importance of LID feature
 - Construction is critical to long-term LID performance
- The contractor needs to understand the design intent of LID practices:
 - Water quality and water quantity goals
 - Base flow requirements
 - Concept of infiltration / filtration
- Construction sequences and proper equipment are essential.

Sediment & Erosion Control Issues

- Sediment and erosion control for conventional SWM vs. LID
- Phasing and sequence of construction activities
- Details and notes on the drawings

Operation & Maintenance Issues

- Cold weather
 - University of New Hampshire study 2007
 - http://www.unh.edu/erg/cstev/2007
 stormwater annual report.pdf
- Maintenance includes items such as:
 - Sediment removal
 - Erosion repair, vegetation pruning
 - One common concern who will maintain the rain gardens and how

Operation Maintenance Issues

 LID techniques do not typically require specialized maintenance equipment and may be able to be maintained as part of typical landscaping activities

Monitoring Issues

- Funding issue
- Staff and training
- Property owner
- Municipal staff

Thank you!

Questions & Discussion

