

LID Performance

Pre-Development

50% Deep & Shallow Infiltration

Natural Ground Cover

Conventional End of Pipe

4

Urban Hydrology

Typical development: Stormwater management using End of Pipe SWM Pond

Integrated SWM Controls

5

Urban Hydrology

Development with Low Impact Development

TYPICAL ANNUAL RAINFALL EREQUENCY DISTRIBUTION FOR

AVERAGE RAINFALL DEPTHS &

TRADITIONAL SWM APPROACH & CRITERIA

Traditional SWM techniques perform poorly in relation to Infiltration and Erosion criteria, moderately well in relation to Water Quality, but perform exceptionally well in the context of Flood Control criteria.

Traditional SWM Approach vs. Criteria

CRITERIA

 LID techniques are highly capable of satisfying the majority of the 4 design criteria (water quality, erosion, infiltration and (water balance)

LID SWM Approach vs. Criteria

CRITERIA

• When used together

Holistic SWM Approach vs. Criteria

ONTARIO POLICIES

Top Five Stakeholder Priorities

Long term maintenance needs and impact on performance;

- Lifecycle costs (asset management);
- Water quality and quantity performance of LID design in low infiltration soils;
- How multiple LID treats and manages stormwater;
- Performance of flood control, erosion control, water quality and natural heritage protection.

CVC's Infrastructure Performance & Risk Assessment Program

- 30 constructed 25 planned LID sites
- 12 LID retrofit monitoring sites:
 - All sites have water level monitoring
 - 3 comprehensive flow and water quality monitoring
- 2 New Development sitesstarting 2014
- 1 Regional Road (water conservation/SWM)- 2015

Elm Drive- Road Reconstruction

BEFORE

Elm Drive

•Construction completed May 2011

•Hydrological monitoring began August 2011

•Water quality monitoring began June 2012

Designed to Provide:

•Enhanced water quality control

•Erosion control to the extent possible

July 8th 2013 Thunder Storm

Greater than 100 Year Event

[·] Elm Drive LID Site

LID Performance

- Pre-construction
 ~100% of rainfall
 would enter municipal
 stormsewers
- Post Construction-30% less volume entering sewers and creek

LID Performance

- LID reduced up to 60% of the peak runoff;
- Delayed the timing of the peak by 40 minutes

July 8th 2013 Thunder Storms

104 mm over 5 ½ hrs – 240 mm/hr peak intensity for 10 min interval

For 90% of all rainfall events

- No flow entering Cooksville
- No pollutants
- Recreating nature in the heart of the City

Water Quality

Design Goal for Elm	Enhanced Treatment 80% SS Removal Annual AVG	
CVC Stormwater Management Criteria	Enhanced Treatment 80% SS Removal Annual AVG	
Observed Performance	99% TSS Removal Concentration for TSS is below stream objectives Performance exceeding all criteria	
		VC VC

Flood Control

Design Goal for Elm	None	
	However, design estimations were as follows: 2 Yr – 37% Reduction 5 Yr – 27% 100 Yr – 13% Compared to pre-retrofit conditions (uncontrolled)	
CVC Stormwater Management Criteria	Post to Pre control of peak flows for the 2-100 year design storms to the appropriate Watershed Flood Control Criteria.	
Observed Performance	2 year event 70-100% Reduction to pre-retrofit conditions	
	60% peak flow reduction, 30% volume reduction, 40 min lag	
	Performance excellent	
		VC

Erosion Control				
Design Goal for Elm	To the extent possible			
CVC Stormwater Management Criteria	As a minimum, on site detention of 5 mm. For sites w. a SWM Pond, detain the 25 mm event for 48 hrs			
Observed Performance	Volume of the 25 mm event is absorbed reduced by 100% going well beyond criteria.			
	Performance exceeding all criteria			
	CONSERVATION			

Water Balance

CVC Stormwater M	Ainimum of 3 mm of groundwater recharge per
Management ev	event.
Criteria (L	Low volume Groundwater Recharge Area)
Observed A	Il runoff is exfiltrated for events under 25 mm.
Performance U	Up to 13 mm is recharged for events of this size.
F	For larger events where discharge was
ol	observed:
1	1-16 mm of recharge provided

Lakeview Road Retrofit

Preconstruction Monitoring Began in 2010;

Post-construction monitoring began in Fall 2012;

Resident input on aesthetic vision for streetscape helped increase uptake of street side gardens (23 of 26 are gardens, 3 grassed)

Lakeview

Preliminary data showing similar results to Elm Drive

Broad Transferability of Data and Knowledge

- Participation of <u>leading</u> <u>national/international SWM researchers</u> <u>and practitioners in the area of LID</u> monitoring to ensure quality control of data analysis;
- Monitoring results consistent and in some cases outperforming International BMP database (BMPDB) and National (USA) Stormwater Quality Database (NSQD), and STEP (Ontario);
- Water level data supports LID functioning during winter thaw events

New Residential Development

Evaluate SW pond performance in light of LID upstream given only 3-5 events (annually) produce runoff entering pond

New Residential Development

Top stakeholder priorities

 Water quality and quantity performance of LID design in low infiltration soils; 	Objectives 1, 2 & 3 will begin to be addressed in a report that will be released in March 2014
2. How multiple LID treats and manage stormwater;	
3. Performance of flood control, erosion control, water quality and natural heritage protection;	
4. Long term maintenance needs and impact on performance;	Objective 4 & 5 – Require longer term monitoring (min 5 years) to answer these objectives
5. Lifecycle costs to support asset management.	

Smart Silt

- CVC in partnership with Provincial and Federal Ministries developed erosion and sediment control effectiveness monitoring and rapid response protocol for high risk construction projects.
- Piloted in the City of Brampton and is meant to be implemented by the developer/landowner and self-regulatory;
- CVC's real time in-stream water quality gauges;

More Information

Home » Low Impact Development

aLeader for CleanWater

SHOWCASING WATER INNOVATION From news articles to videos and photos.

LOW IMPACT DEVELOPMENT GUIDANCE

Learn about the process and best management practice tools for management of stormwater within ...

POLLUTION PREVENTION Apply the principles of "Pollution Prevention" to help ensure that you are in...

RELATED PAGES

LID Guidance Documents

Making it Work - LID Events

Subwatershed Studies

LATEST NEWS

Fall Colours September 27, 2013

Round Gobies Detected in the West Credit River September 27, 2013

Enjoy More Wildlife On Your Property September 26, 2013

MAKING IT WORK - LID EVENTS In partnership with other leaders in austainability Oradit Vallas

EVENTS

http://www.creditvalleyca.ca/low-impact-development/

